Detection and Classification of Tomato Crop Disease Using Convolutional Neural Network

نویسندگان

چکیده

Deep learning is a cutting-edge image processing method that still relatively new but produces reliable results. Leaf disease detection and categorization employ variety of deep approaches. Tomatoes are one the most popular vegetables can be found in every kitchen various forms, no matter cuisine. After potato sweet potato, it third widely produced crop. The second-largest tomato grower world India. However, many diseases affect quality quantity crops. This article discusses deep-learning-based strategy for crop detection. A Convolutional-Neural-Network-based technique used classification. Inside model, two convolutional pooling layers used. results experiments show proposed model outperformed pre-trained InceptionV3, ResNet 152, VGG19. CNN achieved 98% training accuracy 88.17% testing accuracy.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Double-Star Detection Using Convolutional Neural Network in Atmospheric Turbulence

In this paper, we investigate the usage of machine learning in the detection and recognition of double stars. To do this, numerous images including one star and double stars are simulated. Then, 100 terms of Zernike expansion with random coefficients are considered as aberrations to impose on the aforementioned images. Also, a telescope with a specific aperture is simulated. In this work, two k...

متن کامل

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

3D model classification using convolutional neural network

Our goal is to classify 3D models directly using convolutional neural network. Most of existing approaches rely on a set of human-engineered features. We use 3D convolutional neural network to let the network learn the features over 3D space to minimize classification error. We trained and tested over ShapeNet dataset with data augmentation by applying random transformations. We made various vi...

متن کامل

Image Classification using Convolutional Neural Network

Convolutional Neural Networks (CNNs) have been established as a powerful class of models for image recognition problems. Inspired by a blog post [1], we tried to predict the probability of an image getting a high number of likes on Instagram. We modified a pre-trained AlexNet ImageNet CNN model using Caffe on a new dataset of Instagram images with hashtag ‘me’ to predict the likability of photo...

متن کامل

Image Manipulation Detection using Convolutional Neural Network

Using various methods, an image manipulation can be done not only by the image manipulation itself, but also by the criminals of counterfeiters for the purpose of counterfeiting. Digital forensic techniques are needed to detect the tampering and manipulation of images for such illegal purposes. In this paper, we present an image manipulation detection algorithm using deep learning technology, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronics

سال: 2022

ISSN: ['2079-9292']

DOI: https://doi.org/10.3390/electronics11213618